Translate

Sabtu, 02 Oktober 2021

IT'S ABOUT DATA MINING, TEXT MINING, AND WEB MINING

 

NAMA            : ADINDA FEBIYANTI

KELAS           : AKUNTANSI 2020A

NIM                : 017

APA SIH DATA MINING, TEKS MINING, DAN WEB MINING ITU?

WHAT ARE DATA MINING, TEKS MINING, AND WEB MINING?

Kalian pasti seringkali merasa aneh dan penasaran ketika mendengar istilah data mining, teks mining, dan web mining. Dan tentunya tak jarang rasa penasaran itu menimbulkan beberapa pertanyaan dalam otak kalian, seperti apa sih data mining itu? Manfaat nya apa aja sih? Atau bisa dipake untuk apa aja sih si data mining dan kawan-kawan nya itu?. Nah pada postingan blog kali ini, aku akan membantu kalian menghapuskan sedikit rasa penasaran kalian, yuk langsung aja kita ke pembahasannya!

APA SIH DATA MINING ITU?

Menurut sekawanmedia.co.id mereka mengartikan data mining sebagai proses pengumpulan sebuah informasi penting pada suatu data yang berukuran besar. Untuk pengumpulan data tersebut dapat dilakukan melalui proses perhitungan statistika, matematika, maupun penggunaan teknologi AI (Artificial Intelligence).

Istilah lain dari data mining sendiri dapat berarti penambangan data yang berbentuk sebuah tool untuk melakukan analisa dengan teknik penyaringan informasi secara lebih akurat. Teknik tersebut biasanya dilakukan untuk menemukan beberapa pola – pola tertentu yang masih memiliki relevansi dengan goals atau instruksi dari pengguna (user).

Dari sini pasti kalian sudah ada sedikit gambaran mengenai data mining, lalu tipe informasi apa aja ya yang dapat diperoleh dari data mining?. Pasti kalian lebih penasaran lagi nih, yuk jangan bosen untuk membaca karena dengan membaca dapat menambah pengetahuan kita. HWAITING!!!

Apa Aja Ya Tipe Informasi Yang Dapat Diperoleh Dari Data Mining?

Perlu kalian ketahui bahwa, pada dasarnya data mining lebih terdorong pada penemuan. Data mining memberikan wawasan pada korporat, data yang tidak dapat diperoleh dengan OLAP (online analytical processing) dengan menemukan pola-pola yang tersembunyi serta hubungan dalam database yang besar dan aturan menarik kesimpulan dari mereka untuk memprediksikan perilaku pada masa yang akan datang.

Lalu tipe dari informasi yang dapat diperoleh dari data mining, meliputi asosiasi, urutan, klasifikasi, cluster, dan peramalan

  1. Asosiasi merupakan kejadian yang dikaitkan dengan suatu peristiwa tunggal. Sebagai contoh penelitian mengenai pola pembelian di supermarket akan mengungkapkan bahwa, ketika keripik jagung dibeli, maka minuman cola akan dibeli sebanyak 65 persen, tetapi ketika terdapat promosi, maka cola yang dibeli meningkat menjadi 85 persen. Informasi ini dapat membantu para manajer untuk mengambil keputusan yang lebih baik karena mereka telah mempelajari manfaat dari suatu promosi.
  2. Dalam sekuen, maka peristiwa-peristiwa akan dikaitkan berdasarkan waktu. Kita dapat menemukan contohnya, jika sebuah rumah dibeli, terdapat 65 persen kemungkinan sebuah kulkas baru akan dibeli juga dalam dua minggu, dan 45 persen kemungkinan sebuah oven akan dibeli dalam waktu sebulan setelah rumah itu dibeli.
  3. Klasifikasi membahas pola-pola yang menggambarkan kelompok yang mana suatu barang yang dimiliki dengan memeriksa barang yang ada, yang telah diklasifikasikan dan dengan menarik kesimpulan dari serangkaian aturan. Sebagai contoh, bisnis seperti misalnya kartu kredit atau perusahaan telepon akan khawatir kehilangan para pelanggannya yang loyal. Klasifikasi dapat membantu untuk menemukan ciri-ciri dari para pelanggan yang memiliki kecenderungan untuk berhenti dan dapat meyediakan suatu model untuk membantu para manajer dalam memprediksikan siapakah para pelanggan tersebut sehingga para manajer dapat merancang kampanye-kampanye khusus untuk mempertahankan para pelanggan tersebut.
  4. Pengklasteran (clustering) bekerja dengan cara yang sama seperti klasifikasi ketika tidak ada kelompok yang masih belum didefinisikan. Alat bantu data mining dapat menemukan pengelompokan yang berbeda di dalam data, seperti misalnya menemukan daya tarik kelompok atas kartu bank atau membagi suatu database ke dalam kelompok-kelompok dari para pelanggan yang didasarkan pada demografis dan tipe dari investasi pribadi.
  5. Meskipun penerapan-penerapan tersebut melibatkan prediksi. tetapi peramalan menggunakan prediksi dalam cara yang berbeda. Peramalan menggunakan serangkaian nilai yang ada untuk meramalkan berapa besar dari nilai lainnya. Sebagai contoh, peramalan akan menemukan pola-pola dalam data untuk membantu para manajer dalam mengestimasi nilai masa mendatang dari variabel-variabel yang terus-menerus, seperti angka penjualan.

Sistem-sistem tersebut menjalankan analisis tingkat tinggi atas pola atau kecenderungan, tetapi mereka juga dapat menelusuri untuk menyediakan lebih terperinci ketika diperlukan. Terdapat aplikasi data mining bagi seluruh area fungsional dalam bisnis, dan bagi pemerintah serta pekerjaan ilmiah. Salah satu penggunaan yang terkenal atas data mining adalah menyediakan analisis pola dalam data pelanggan yang terperinci bagi kampanye pemasaran one-to-one untuk mengidentifikasi para pelanggan yang menguntungkan.

What’s Next? It’s About The Function Of Data Mining

Selanjutnya, kita akan memahami dan mempelajari mengenai fungsi dari penerapan data mining. Seperti yang kita tahu bahwa segala hal yang ada di bumi ini diciptakan dengan berdasarkan pada alasan tertentu dan fungsi tertentu. Dan tentu saja lah data mining juga memiliki fungsi dari penerapannya. Agar gak lebih penasaran lagi, yuk kepoin bareng-bareng

  1. Association : Yang pertama yaitu ada association, yang merupakan proses mengidentifikasi relasi (hubungan) dari setiap kejadian atau peristiwa yang sudah terjadi pada suatu waktu tertentu.
  2. Classification Classification berfungsi untuk menyimpulkan beberapa definisi karakteristik pada suatu grup atau kelompok. Contohnya seperti seorang pelanggan dari Enhypen Company yang berpindah layanan disebabkan karena kalah bersaing dengan pelanggan lain.
  3. Clusterization Ketiga, clusterization merupakan proses mengidentifikasi kelompok dari produk ataupun barang yang memiliki karakteristik khusus.
  4. Descriptive : Descriptive berfungsi untuk memahami lebih dalam mengenai data, sehingga kita dapat mengamati setiap perubahan perilaku pada informasi tersebut.
  5. Forecasting : Kelima, forecasting merupakan teknik peramalan data yang dilakukan untuk memperoleh gambaran mengenai nilai suatu data di masa yang akan datang sesuai pengumpulan informasi dengan jumlah informasi yang besar. Contoh nya adalah data terkait peramalan jumlah peserta audisi yang masuk pada agensi BELIFT untuk acara I-Land season 2
  6. Predictive Predictive adalah fungsi yang digunakan untuk menjelaskan suatu proses dalam menentukan sebuah pola tertentu pada suatu data. Pola tersebut digunakan oleh berbagai variabel yang ada pada data tersebut.
  7. Sequencing : Terakhir, sequencing adalah proses identifikasi dari tiap hubungan yang berbeda pada periode waktu tertentu. Contoh dari sequencing sendiri adalah seorang penggemar dari TXT yang mengunjungi Hybe Insight secara terus – menerus (berulang).

Makin Kepo Nih! Gimana Sih Metode Yang Digunakan Untuk Pengembangan Data Mining?

Setelah kita mengetahui beberapa fungsi utama dari data mining, selanjutnya masuk pembahasan mengenai metode apa saja yang diterapkan untuk melakukan penambangan data. Pastinya dalam suatu sistem akan ada metode yang akan digunakan dalam pengembangannya. Makan oreo aja ada metode nya, masa data mining enggak?. Yuk langsung intip aja pembahasan nya gimana!

  1. Proses Pengambilan Data
Tahapan fase yang dilakukan dimulai dari tahap terbawah, yaitu data masih berbentuk raw (mentah), hingga masuk pada fase akhir. Dimana untuk mencapai fase akhir tersebut, kita perlu melakukan beberapa tahapan sebagai berikut.

  • Data cleansing, yaitu fase dimana data masih tidak lengkap, mengandung pesan error, dan tidak konsisten. Sehingga, perlu untuk melakukan pembersihan data lebih lanjut.
  • Data integration, yaitu proses terjadinya integrasi data, dimana sumber data yang berulang – ulang serta dapat dikombinasikan dengan file lainnya ke dalam suatu sumber.
  •  Selection, pada tahapan ini data yang relevan dan sesuai dengan analisis dapat dipilih pada informasi koleksi tersebut.
  • Data transformation, dimana data yang telah terpilih, akan ditransformasikan ke dalam bentuk yang cocok untuk prosedur penggalian lebih lanjut dengan cara melakukan proses normalisasi dan agregasi.
  • Data mining, pada tahapan ini termasuk pada langkah – langkah utama untuk mengekstrak pola yang berpotensi sebagai sumber informasi yang berguna.
  • Pattern evaluation, pada tahapan ini, masuk pada pola atau skema yang menarik dengan mempresentasikan pengetahuan yang telah diidentifikasi berdasarkan hasil pengukuran (measure) yang telah dilakukan.
  • Knowledge representation, merupakan tahap yang terakhir, dimana hasil informasi berupa pengetahuan yang berhasil diperoleh akan disajikan atau divisualisasikan kepada pengguna (user).
          2. Teknik dalam Penambangan Data
Perlu kita pahami bahwa terdapat 2 instrumen teknik melakukan penambangan data, diantaranya adalah sebagai berikut:

  • Teknik Klasik : Teknik yang digunakan adalah metode statistik, merupakan salah satu cabang ilmu matematika yang mempelajari sekumpulan data beserta deskripsinya untuk dijadikan sebuah laporan informasi penting dan membuat keputusan yang tepat. Keuntungan dari menggunakan statistik sendiri adalah mampu menampilkan informasi terkait basis data (database) secara lebih terstruktur dan user friendly.
  • Teknik Generasi Berikutnya : Teknik yang termasuk generasi masa ini adalah decision tree (pohon keputusan), merupakan model prediktif yang mana menyerupai seperti pohon. Di setiap node dalam struktur pohon tersebut, sudah mewakili pertanyaan untuk kebutuhan pengelompokkan.

Permasalahan yang Dapat Kita Jumpai dalam Penambangan data mining

Seperti yang kita semua tau bahwa, disetiap kegiatan yang kita lakukan pasti ada saja masalah yang akan mengintai. Dan hal ini berlaku juga saat melakukan penambangan dalam data mining. Tapi teman-teman semua tidak perlu khawatir karena kali ini kita akan membahas bersama-sama apa aja permasalahan yang ada saat melakukan penambangan data mining.

  1. Metodologi Mining
  •  Menambang berbagai jenis pengetahuan dari berbagai tipe data
  •  Kinerja: efisiensi, efektivitas, dan skalabilitas
  • Evaluasi pola: masalah ketertarikan
  • Memasukkan pengetahuan latar belakang
  •  Menangani kebisingan dan data yang tidak lengkap
  •  Metode penambangan paralel, terdistribusi dan tambahan
  •  Integrasi pengetahuan yang ditemukan dengan yang ada: fusi pengetahuan
      2. User interaction
  • Bahasa kueri penambangan data dan penambangan ad-hoc
  • Ekspresi dan visualisasi hasil penambangan data
  • Penambangan pengetahuan interaktif di berbagai tingkatan abstraksi
      3. Applications and social impacts
  • Penambangan data khusus domain & penambangan data tak terlihat
  • Perlindungan keamanan data, integritas, dan privasi

Bonus Part : The Example of Data Mining Concept



Setelah membaca dan memahami materi tentang data mining diatas, tentunya kita semua sudah ada sedikit gambaran mengenai konsep dari data mining. Dan tentu saja teori tanpa praktek itu gak mudah kan ya. Maka dari itu, disini kita akan membahas mengenai contoh dari konsep data mining. Yuk disimak baik-baik!

  1. Market Analysis Dan Management
Contoh yang pertama, data mining juga dapat dimanfaatkan untuk mendukung target pemasaran bisnis, CRM (Customer Relationship Management), cross selling, dan segmentasi pasar customer.

  • Target Pemasaran, Misalnya menemukan kelompok pelanggan “model” yang memiliki karakteristik yang sama: minat,tingkat pendapatan, kebiasaan belanja, dll. atau menentukan pola pembelian pelanggan dari waktu ke waktu.
  • Analysis lalu lintas pasar, Menemukan hubungan / hubungan antar produk penjualan, & prediksi berdasarkan asosiasi tersebut.
  • Profiling pelanggan, Jenis pelanggan apa yang membeli produk apa (pengelompokan atau klasifikasi)
  • Analisis kebutuhan pelanggan, Misalnya identifikasi produk terbaik untuk berbagai kelompok pelanggan, Memprediksi faktor apa yang akan menarik pelanggan baru, Penyediaan informasi ringkasan, Laporan ringkasan multidimensi, Informasi ringkasan statistik (kecenderungan dan variasi pusat data)

2.      Data Warehouse

Data warehouse merupakan tempat penyimpanan data dari berbagai sumber yang dijadikan ke dalam one storage saja (terpusat). Tujuan dari implementasi sistem ini adalah untuk mengkonstruksikan proses data cleaning, transformation, integration, dan fitur yang lainnya.

  • Perencanaan keuangan dan evaluasi aset, Misalnya analisis dan prediksi arus kas, analisis klaim kontinjensi untuk mengevaluasi aset, analisis cross-sectional dan time series (rasio keuangan, tren analisis, dll.)
  • Planning Perencanaan sumber daya, Misalnya merangkum dan membandingkan sumber daya dan pengeluaran
  • Persaingan, Misalnya memantau pesaing dan arah pasar, mengelompokkan pelanggan ke dalam kelas dan penetapan harga berbasis kelas prosedur, dan mengatur strategi penetapan harga di pasar yang sangat kompetitif.

3.      Basis Data Relasional

Contoh yang terakhir, merupakan fitur koleksi dari sebuah tabel. Dimana setiap tabel tentu saja memiliki kolom dan baris. Kemudian, bahasa query yang sering digunakan untuk merencanakan kebutuhan databese adalah SQL.

  • Pendekatan: Clustering & konstruksi model untuk penipuan, analisis outlier
  • Aplikasi: Layanan kesehatan, ritel, layanan kartu kredit, telecomm. Misalnya Asuransi otomatis, Pencucian uang, Asuransi kesehatan, Telekomunikasi, Analisis pola yang menyimpang dari norma yang diharapkan, Industri retail, Dll.

Setelah kita semua mengetahui tentang apa data mining itu? Seperti apa tipe infromasi yang diperoleh oleh data mining, Lalu kita juga sudah mengetahui beberapa fungsi dari data mining. Nah sekarang kita akan berkenalan dengan adik-adik dari data mining, yaitu ada teks mining  dan web mining. Yuk kita kenalan bareng mereka!

SEPERTI APA YA TEKS MINING DAN WEB MINING ITU?

Pertama-Tama Yuk Kita Kenalan Dengan Text Mining

Perangkat text mining (penelusuran teks) biasanya digunakan untuk membantu bisnis dalam menganalisis data. Alat-alat bantu ini dapat mengekstrak elemen-elemen kunci dari rangkaian data yang besar yang tidak terstruktur, menemukan pola dan hubungan, dan meringkas informasi.

Bisnis dapat beralih kepada text mining untuk menganalisis transkrip dari panggilan kepada pusat layanan pelanggan untuk mengidentifikasi layanan utama dan menyelesaikan masalah atau untuk mengukur pendapat pelanggan mengenai perusahaan mereka.

Lalu perangkat lunak analinis sentimen (sentiment analysis) dapat melakukan penelusuran atas komentar teks dalam pesan surel, blog, percakapan dalam media sosial, atau bentuk survei untuk mendeteksi opini yang menyenangkan dan yang tidak menyenangkan mengenai topik bahasan tertentu.

Sebagai contoh, pialang diskon dari Enhypen Company menggunakan perangkat lunak Attensty Analyze untuk menganalisis ratusan ribu interaksi pelanggannya tiap bulan. Perangkat lunak ini dapat menganalisis catatan, surel, tanggapan survei, dan diskusi online dari layanan pelanggan Enhypen untuk menemukan tanda-tanda ketidakpuasan yang menyebabkan pelanggan berhenti menggunakan jasa dari perusahaan. Attensity dapat secara otomatis mengidentifikasi berbagai macam suara yang digunakan oleh pelanggan untuk mengekspresikan umpan balik mereka (seperti suara yang positif, negatif, atau sesuai dengan kondisi) untuk menunjukkan dengan tepat keinginan dari seseorang untuk membeli, berhenti membeli, atau reaksi terhadap suatu produk tertentu atau pesan yang disampaikan melalui pemasaran. Enhypen company menggunakan informasi ini untuk mengambil tindakan korektif, seperti meningkatkan komunikasi pialang secara langsung dengan pelanggan dan mencoba untuk memecahkan permasalahan dengan segera yang membuat pelanggan tidak puas.

Wuih keren banget ya text mining ini, kita bisa gunakan ini sebagai cara untuk mengetahui bagaimana perasaan pelanggan terhadap layanan yang kita sediakan. Lalu, bagaimana dengan web mining? Apakah fungsinya juga sama?

Bagaimana dengan web mining?

Web merupakan sumber utama lainnya dari data yang tidak terstruktur untuk mengungkapkan pola, kecenderungan, dan wawasan dalam perilaku konsumen. Penemuan serta analisis pola dan informasi yang bermanfaat dari World Wide Web disebut dengan web mining (penelusuran web).

Bisnis akan beralih kepada web mining untuk membantu mereka dalam memahami perilaku konsumen, melakukan evaluasi atas keefektifan situs web tertentu, atau kuantitas dari keberhasilan suatu kampanye pemasaran. Misalnya, para pemasar menggunakan Google Trend dan Google Insight untuk layanan Search, yang menulusuri popularitas dari berbagai jenis kata dan frase yang digunakan dalam query pencari dari Google, untuk mempelajari apa yang disukai oleh orang-orang, dan apakah mereka tertarik untuk membeli.

Web mining akan mencari pola dalam data melalui penelusuran konten, penelusuran struktur, dan penelusuran penggunaan. Penelusuran konten dari web merupakan suatu proses untuk mengesktrak pengetahuan dari konten dalam laman web, meliputi teks, gambar, audio, dan data video. Penelusuran struktur dari web akan memeriksa data terkait dengan struktur dari situs web tertentu.

Sebagai contoh, tautan yang menunjuk pada suatu dokumen mengindikasikan popularitas dari dokumen tersebut, sementara itu tautan dari suatu dokumen mengindikasikan pengayaan atau mungkin variasi topik yang tercakup dalam dokumen. Penelusuran penggunaan web menelaah data interaksi pengguna yang dicatat oleh server web kapan pun permintaan dari sumber web daya situs web tersebut diterima. Catatan penggunaan data mengenai perilaku pengguna ketika pengguna menelusuri atau membuat transaksi pada situs web dan mengunmpulkan data dalam server log. Dengan menganalisis data tersebut, dapat membantu perusahaan dalam menentukan nilai dari pelanggan tertentu, melintasi strategi pemasaran seluruh produk, dan keefektifan dari kampanye promosi.

Nah setelah kita semua mempelajari dan memahami data mining, text mining dan web mining, semoga ilmu yang kita pelajari kali ini bisa berguna bagi masa depan kita semua ya. Tetap semangat dan terus belajar!! HWAITING!!!

 

 

v  SUMBER REFERENSI DAN INFORMASI

 

 

 

Tidak ada komentar:

Posting Komentar

IT'S ABOUT DATA MINING, TEXT MINING, AND WEB MINING

  NAMA             : ADINDA FEBIYANTI KELAS            : AKUNTANSI 2020A NIM                 : 017 APA SIH DATA MINING , TEKS MINING, ...